首页> 外文OA文献 >A dynamic component model for forecasting high-dimensional realized covariance matrices
【2h】

A dynamic component model for forecasting high-dimensional realized covariance matrices

机译:一种预测高维实现协方差矩阵的动态分量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Multiplicative MIDAS Realized DCC (MMReDCC) model simultaneously accounts for short and long term dynamics in the conditional (co)volatilities of asset returns, in line with the empirical evidence suggesting that their level is changing over time as a function of economic conditions. Herein the applicability of the model is improved along two directions. First, by proposing an algorithm that relies on the maximization of an iteratively re-computed moment-based profile likelihood function and keeps estimation feasible in large dimensions by mitigating the incidental parameter problem. Second, by illustrating a conditional bootstrap procedure to generate multi-step ahead predictions from the model. In an empirical application on a dataset of forty-six equities, the MMReDCC model is found to statistically outperform the selected benchmarks in terms of in-sample fit as well as in terms of out-of-sample covariance predictions. The latter are mostly significant in periods of high market volatility.
机译:MIDAS可实现的乘法DCC(MMReDCC)模型同时说明了资产收益的有条件(共)波动的短期和长期动态,这与经验证据表明,其水平随时间随着经济状况的变化而变化。在此,该模型的适用性沿两个方向得到了改善。首先,通过提出一种算法,该算法依赖于迭代地重新计算的基于矩的轮廓似然函数的最大化,并通过减轻偶然性参数问题而使估计在大范围内可行。其次,通过说明条件引导程序来根据模型生成多步提前预测。在对46个股票的数据集的经验应用中,发现MMReDCC模型在样本内拟合以及样本外协方差预测方面在统计上优于所选基准。后者在市场高波动时期最为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号